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APSTN.CT

A unified treatment of radiative corrections to a class of scattering experi-

ments is presented. The experiments considered are those in which either (but not both)

the scattered or recoil particle is detected. The recoil kinematics are properly treated

and the calculation is simplifiad by retaining only terms of logarithmic order. The ge-

neral results are applied to specific practical examples in which radiative corrections

are likely to be important. Except possibly for the case of Compton scattering with

nearly maximum momentua transfer, the errors are estimated to be less than 2 of the

cross section.



3.

I. ITTRODUCTION.

Calculations in quantum electrodynamics, while straightforward in principle,

are often laborious; and in many cases the results have not been put into a convenient

form for application to specific experiments. If one does not insist upon a complete

calculation (to a given order of ), it should be possible to pick out the dominant

contributions which may then be simpler to calculate. That this is true has been made

clear in recent years by work in which the infrared contributions are singled out for
1,2,3,4special considerations . The physical reason that these contributions are the most

important at very high energies is well-k1nown. They arise from the large scale distri-

butions of the electromagnetic field, which should be classically describable. At very

high energies these fields are strongly Lorentz contracted in the region transverse

to the moving particlos. They cannot be quickly rearranged when a charged particle is

deflected in a scattering process; and as a result, radiation must be emitted (brems-

strahlung) and togethor with that there must be a strong radiative reaction tending to

suppress the elastic part of the scattering cross section. This feature of the radiative

corrections has, of course, boon well-Imovm for many years, but its iportance from a

practical computational standpoint has perha)s not always been so well appreciated.

These general ideas are discussed in more detail in Ref I . It is the purpose of the

present paper to exploit them for the calculation of radiative corrections to a specific

class of scattering experiments.

In this paper the radiative corrections will be separated into two parts,

which will be called respectively the"external radiative corrections" and the "internal

radiative corrections". The distinction arises because in the scattering process the

current density of the interacting s.rstcm can be split up in a natural way into two

parts : the first port is the "ext rnal current", which is specified entirely by the

momenta and spin states of the initial and final charged particles; the "internal

current" is the residue, which dependn on the specific details of the scattering inter-

action. To be more precise, the extcrnal radiative contribution is obtained by conside-

ring emission and absorption of photons (real or virtual) from external lines. By them-

selves these contributions would not corres,?ond to a conserved current because the

scattering matrices which they multiply would be shifted off the mass shell due to
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their dependence upon k, the momentum of the photon. The external radiative correction

is by definition the contribution which is obtained when this particular k dependence

is neglected. Since these corrections are associated mainly with long wave-length (in-

frared) .hotons, this is a good approximation if the scattering amplitude does not have

a strong dependence on k. The residue from this approximation together with the contri-

butions in which a photon terminates on an internal line is then called the internal

radiative correction : it clearly depends on the precise details of the scattering

process. On the other hand, the external radiative corrections are independent of de-

tails. Thrthermore, if we are willing to estimate thor by considering only terms of

logarithmic order, they may be approxiimated with very little labor. Since the neglected

terms of order unity must be multiplied by (0</A) to obtain the fractional error, the

error uad e in this estimate is likely to be only of the order of magnitude of one or

two percent of the cross section. The throwing away of terms of order unity is of course

not unique, and we frequently siuplify logarithmic terms by making changes of order

unity. (Sometimes terms of order unity are retained in the results if they are well-

known : for example, those arising from an electron vertex are retained). An important

feature of this estimate is that the result factorizes; i.e. the correction can be

expressed as a factor depending only on the external momenta times the uncorrected

cross section. It is of course impossible to give a general discussion of the internal

radiative corrections; however, in many. practical examples one can give arguments that

they are not important relative to the dominant external radiative corrections. Of

course, in a high precision scattering experiment (precision of order one percent) it

would be necessary to give a complete calculation of the radiative corrections. Even

in such a situation it would probably be of value to split the contributions in the

suggested way. The main reason for this is that the external corrections contain all

the infrared divergence, which ca be evaluated explicitly once and for all. The remai-

ning part of the calculation need then have no artificial infrared cut-off.

In the present paper, we shall present a fairly complete calculation of the

external radiative corrections for some typical scattering experiments. The aim is to

consider a general situation in which either the incident particle or the target

particle is detected; coincidence experimunts are not considered. The classic calcula-

tion of this type refers to an experiment where the particle is detected at a precisely
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defined angle but with a spread in possible energies. In current experiments the momen-

tum spectrum of the scattered particles is also of interest. If the kinematics leads

to a rapid variation of elastic scattering energy with angle, another type of experiment

- precisely defined momentum with spread in angles - is possible Radiative corrections

to these three types of experiment will be discussed in a unified way here. Although the

experimental conditions envisaged may be somewhat idealized, it is hoped that the prin-

ciples will be sufficiently well illustrated that the results may be extended to more

realistic experimental situations. We do not wish to specialize to a particular choice

of projectile and target; however, in order that the correction be meaningful compared

to its error, we impose the restriction that the incident particle be extremely relati-
6vistic and suffer a momentum transfer which is large compared with its rest mass . The

principal difficulty that makes necessary a new calculation is the fact that recoil

effects may become important in the general situation. Thus additional terms arise dyna-

mically from the fact that the recoiling particle may possess a charge and kinematically

from the fact that the phase space is altered. Thus, if the scattered particle has an

energy loss C relative to elastic scattering, the energy carried off by an additional

unobserved photon will not be C-, and it will in fact depend upon the direction of its

emission. The integration over thE phase space of the unobserved photon is the main

source of difficulty in making a complite calculation. There is of course no difficulty

in principle, but if we have the aim of doing the calculation for a completely general

situation and presenting the result in a convenient form for applications, the calcula-

tion must be carefully arranged to achieve this purpose. We emphasize again that this

calculation is made feasible by the fact that we are interested only in obtaining the

dominant logarithlic terms associated with the external radiative corrections. A com-

plete calculation would be r.iany times more difficult.

The paper is organized in the following way. In Section II are presented the

principal features of the calculation, while some of the finer points are relegated to

the Appendices. Section III contains some discussion of the errors made in neglecting

the internal radiative corrections end considers some special features of particular

scattering experiments. In Section IV the results are specialized to various experiments

in which the radiative corrections are important. Some attempt was made to keep Section

IV self-contained; but an experimuntalist may find it of value to refer also to Section

IIa, where the "experimental conditions" are defined. Some of the nocessar notation is

also defined in Section II.
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II. CALCULATION OF THE M[TERNAL RADIATIVE CO.UCTIONS,

We want to review and extend some of the considerations of Ref.1. concerning

the external radiative corrections, Suppose a real or virtual photon of momentum k is

emitted from an incoming chrrgod particle of momentum p. For definiteness, assume the

charged particle has spin one-half; the correspondi.ng result for zero spin will be ob-

vious by inspection. The matrix cle.ient associated with this eission will have the

form

1 (2p- k).e -d ,/]....... u . (2,1)
--m P k 2 k . p P

The dots indicate a basic factor in the iuaric oler'ont which we need not consider expli-

citly in computing the external radiac tive corrections. It is the sane factor that wouli

occur in the matrix element without photon cissior, except that the 1'e2entun argument

p is changed to p - k. In fact, the rule for calculating the cixteinal radiative corroc-

tions is to neglect the k-dependence of this basic factor; by definition, the correction

to this approximation is included in the intvrnal ra-liative corrections as it depends on

the specific details of the interaction. On the right side of (2.1) the factor corres-

ponding to the emission of a photon appears as a su of two torms; the first is

u (2p - k).c (2.1a)
P k2- 2 k.p

(convection term)

This term, ihich is a simple factor ti:aes the original matrix element, is independent

of the particles spin, The infrared di-vergent contributions, as well as some ultraviolet
divergences, arise from thD convection torms. The other term in the emission factor is

u .
k-21.p p

(spin term)

This depends explicitly on the Dirac matrices, and hence it connot be ritten as a

simple factor times the original matrix element. However, it will be seen later that
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the largest (i.e. logarithmic in E/m) contributions which arise from the spin term can

also be reduced to a simple factor. If the photon is absorbed rather than emitted, k

must be replaced by -k in these oxpressions. For absorption of a photon on an outgoing

charged particle, the corresponding termns are

(2 p' - k)e-( uk ... (convection term) (2.2a)
k -2 k.p

- ,..(sinte~t .(2.2b)
UPI k2 - 2 k.p' (spin ton)

For purposes of calculation it will prove convenient to qatolog the various

contributions to the external radiative corractions according to whothor the photons are

emitted or absorbed by the convection or spin part of the current. The major correction

arises from the convection contribution, which contains all the infrared divergence. For

virtual photons the convection contribution corresponds to both emission and reabsorption

by a convection term; for real photons it refers to the contribution obtained by squaring

the convection part of the eiission matrix element. !im important correction also arises

from the cross term between convection and spin terms (this is called the spin-convectior

contribution). It is interesting to note that in the case of electron scattering from an

external potential treated in Born approydrtion all of the ultraviolet divergence is

associated with the convection contribution. This is in spite of the extra powers of k

in the spin terms; the divergent part of the spin contributions actually turns out to be

zero as a result of the properties of the --matrices.

The external radiative corrections due to virtual photons are now obtained by

summing the contributions from all Feynman diagrams in which a photon is emitted from

one external line and absorbed by another, together with the wave function renornaliza-

tions. For the convection terms the derivation is given in Ref. 1. and only the notation

and result will be quoted here. Consider an arbitrary process containing a number of

charged incoming and outgoing particles. The i external line represents a particle

Q .



of charge eZi and momentum p a number distinguishes incoming (0 1 and

outgoing (0 1 = +i) particles. If the original matrix element for the process is MO,

the virtual photon convection contribution to this matrix element is simply

c* B Mo  , (2.3a)

where

-iZiE i Z, . d4k (2p, -k) (2p .j+k) 2

B =_ __2_ -2- + -pairs -  
k2- 2 k- " 2k. pJ + k + 2k.p. FE/

(2.3b)

The sum extends over each pair of external lines. The infrared divorgoce is cut off

by the introduction of a small photon mass A ; this makes the real and virtual photon

contributions separately convergent before the final cancellation of the infrared diver-

gence.

In Rof. 1. the probability for emitting an unobserved soft photon is calcula-

ted under the assumption that recoil effects are s;:hall. Roughly speaking, this means

that the requirements of energy-momentum conservation are taken into account in compu-

ting the phase space available to the emitted photon; but changes in the cross section

due to the dependence of the momentum of the recoil particle on that of the photon are

neglected. This is a valid approximation if the experimental conditions are such as to

assure that only very soft photons are emitted, and it leads to a demonstration of the

cancelling of the infrared divergence to all orders of approximation. However, for our

present considerations such an approximation is not justified; and as we shall see,

important corrections can arise when the kinematics are treated correctly. Nevertheless,

since it will provide a convenient way for handling the cancelling of the infrared diver-

gence, we give here the probability for emitting an tuobserved soft photon when recoil

is neglected

2 r,(B cd " 0 ,
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where

B = Z G m d Pi P- , (2,4b)

pairs 8 2  J0 (k2+ ) k.pi k.pj /

and c0 is the uncorrected cross section proportional to 1i0.2 The upper limit k m

is generally a function of the direction of the photon, depending on the details of

the experimental arrangement. In dotertnining k as a function of direction, it is of

course important not to ignore k in the overall conservation laws. If, as is the case

in the problem under investigation here, k is independent of direction in some Lorentzm

frame, the integral in (2.4b) may be carried out explicitly. Whon the result is com-

bined with (2.3), the net contribution to the radiative correction is

2 ai (Re B +B) a 0  (2,5a)

where

R B i zi K2  11 K dxMm d
ReB +9n 2 pi. Pj 2 2

1 2

C~Px

S-- dx(25b)4 mi mj

and 2p (I + x)p. + (i-x)p4. Some auimportont contributions of ordor unity have been

neglected. The energies E., E and E appearing here have to be evalutcd in the Lorentz

frame in which k is isotropic. In case particle i is extrunely relativistic relativem

to particle j (i~e. p .pj >> mi Mj), the leading logarithnic contributions to the

summand of (2.5b) may easily be evaluated; the result is
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(( 2 pP . K M. ~ j~ 2piPj . -p.
J M 2 22

n  n - n j - . 2

m .2 22pi'p ) + - 2, p T(2.6)
" iia

(when pi.pj mi mi)

where 6 (o() =1 or 0 for u 0 or ,< o0. Tha only contributions wh-ich have bean

neglected are those of order unity (iu. terms which remain bounded or tcnd to ze,.o as

the various enorgj ratios become large). It is also of soma practical significance to

note that (2.6) contains no Spence functions. In fact the calculation has boon arranged

in such a manner that all the Spence functions which occur h earv ent less than one;

they are therefore of order unity and can be ignored. Of course in a complete celcula-

tion these terms would have to be recovered; this, however, w7ould be one of the least

difficulties in doing a complete calculation. The tenis multiplying the J function can

occur only when n" mi or m. w., Some additional rem:.arks should be ,ade abcut this

result. The last term in both (2.5b) and (2.6) is related to the ultraviolet divergent

part of the convection contribution. As discussed in the introduction, the approximation

of neglecting k inside the residual matrix element rmay thereforo not be terribly well

justified for this term. In particular applications it is then necessary to make a

detailed study to verify ,he:hc 'it is justified to retain this ter in comparison with

other neglected contributions. Another term of similar order of magnitude is the vacuum

polarization and it should be put in eplicitly whenever it occurs. The only other impor.-

tant logarithmic contributions that are hmown are those associated with the spin-convec-

tion contribution; they will be discussed below. 'Je now turn to a :-ero detailed discus-

sion of the kinematical problem and the computation of the external radiative ccrrectiona

with recoil properly treated.

(a) Kineztinal Considorations

We would like to derive the external radiative corrections to a scattering

process in which either (but not both) of the particles is detected. While we do not

wish to specialize the calculation to any particular physical system, rather idealized
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experimental conditions will be assumed. One of these is that the incident beam is

perfectly defined; in practice our result would have to be folded into the energy spec-

trum of the incident beam. It is also assumed that the detector spans a well-defined

angular range (0 . G > min ) and momentum range (pm. > p > Pin) and that

the probability for detecting a particle is uniform in this range. Three special cases

will be considered :

a) Angular resolution is sharp and the modentu:n resolution includes elastic

scattering; the result then depends on A p, the naximija noaentat the particle can lose

below its elastic scattering value.

b) The energy spectrum of particles scattered in a fixed snall solid angle.

c) Sharp nonentun1 resolution and the angular resolution includes elastic

scattering; the result depends on /A E , the difference between the elastic scattering

angle ( 6 1e ) and the niininiul dotoction angle.

Case c) can arise when the elastic scattering e:aoentun has a rapid angular dependence.

As will be evident later, the results for cases a) and c) can be dotorLinod by a single

calculation. Case b) is siply deter..iined from case a) by differentiation.

Je shall try to evaluaote all integrals for arbitrary values of nass, energy

and nonontui transfer; the results n_ay then be specialized later to given choices of

projectile and target. The only restrictions will be that the incident particle be

extremely relativistic and that the momentum transfer be large conpared with the mass

of the incident particle. To avoid an awkward nonenclature, we shall often refer to the

incident particle as an electron and the target particle as a proton; in fact, this

particular scattering process is one of the iajor applications of our result. However,

by setting the nasses equal, the result will apply equally to electron-electron or

electron-positron scattering. By setting the mass and charge of the projectile equal

to zero, we shall obtain the radiative corrections to Compton scattering. The latter

process has not previously been evaluated for actual experimental conditions. We do it

here at the expense of omitting some terms of order unity; those terms could of course
8

be recovered by comparing the present calculation with that of Brown and Peynman 8

(See also the remarks in Section III.a).
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For elastic scattering the electron's initial and final monenta are respec-

tively p1 and P3' while those of the proton are P2 and P4. The angle of' the ela.stLcal3.y

scattered electron is G 3 and that of the recoil protor is 04; both of those are mea-
sured fro-a the direction of the incident bean. Furthernore

2 2 2
P1  = P3  =

(2.7)

2 2
P2 = - 2

For scattering with bru..sotrahln.';, thu final no:-ioeta are pri...od. '21ergy and lo.eilvo

conser.vation in the two c .c "r ezruzac. by

P1 + P2  = P3  4

Pi + )2 = :c-' + t' + "

E:xpcrnonte in vrhici± th i ci:L.r.t or t:.r ot l irT.iclu i6 uC'juo wlJ.. b

labelled respectively I or II wit' a s:Jbsccipt a, b, or c ti leutc the utype of rAtoe-

tion. For oxaznpi, Experi:.ent la ueans th electr on is :itoa ""At ail xgl , Wth

a .onentun loss shaller than Ap3. To keep tho discusoiu.,n g-Aoral, trio charge of "he

electron is called Z e and tb-rt of the lpro'on Z, r_. UI.eoos sL)ccifica:.y. Y -icated,

energies and no:aenta are given in the, labora:;o:"y systen.

Some inportant kinc:_iatical rolatoonshipo will now be derived and listed,.

The first of those are tao energy ond no-:ienta of tho fin'ial particles as a function of

their direction for elarvtic snattdring, U, always assune conditions such thct the inci-

dent ar 6catterod particle i,3 mxtn l" " and m1); then

we easily find

EI
E -2: E wh I + - (1-cos e ) (2.9)

S p3  2 3

and



13.

2E I u2 (m2 + E, ) cos 4P 4 1 '2 ,2 2 T-4 (2. 1lOa)

(n2 + E1) EI  cos 4

(n+ E 2 + E CosS2 1 1 4(21b
4 m2 +E) 2  -E cos2 4 (2.l0b)(m2 + I2 1 c24 '

For each given nonentum loss of the particle being detected, there exists a Lorertz

frame in which the energy of the photon is isotropic. This frame is the center-of-momen-

tum frame of the photon and the unobserved particle. Suppose the four-momentum of the

electron is pi, while the corresponding elastic scattering value is P3. Then the energy

of the photon in the special frame nay be determined from

(p4 + k) 2 - = 2 k.p, + 2 ,. 2 8P3  + ,

where

P3  P3 - Ps

For experinents Ia and Ib, p is parallol to p,, hentce

p3 o(pl + P2)

= 2R (1Z3 1 - 1 1p3 ) (I and Ib) (2.11a)

and for Experimaent Ic

= P P3 sin 63 (03 - 8) (1o) (2.11b)
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Then

k.p - C3 +c?3
- 2 )-2 (^'2  2 )2.

where C.)= (k2 + and E = + Solving for CL) we find

,7 (2.11 d)
(n 2 + 2i(1-

Also let r be the naximuz value of Y 1 for either Experiment Ia or Ic. Then it is

interesting to notice the behavior for two situations. If n >/ r (for exnnple, if

M2 > El), we have simply 61 = i and the recoil proton is never rlctivistic
1 2 a-2

in the special franc . On the other hand, if 1' 1 zi 2  the recoil proton has a

non-relativistic velocity in the spr.cial frame for snall I and a relativistic velo-

city for larg I It is just this dependence of E, on k which was neglected in the
4

calculation of B. For Experiment II, the corresponding expressions are

k.p 6 (2 o1 2a)

P4 (EE+n 2)-- ( +P 4 1 -2 Pr ) (Ia and Ib) (2.12b)

2 = P1 P4 sin 6 4  -& ) (IIc) (2.12c)

72= '2/(..+ 2,,)+ (2.12d)

where

( 2 2

Again, r2 is the naxiuaum value of 2"
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Consider ne:-t the integrals over the final phase space of the particles. For

the elastic scattering part this is of the form

-- 3 - .... -A- (P1 + P2 - P3 - P4)E3  E4

R

where R denotes the region of phase space por!iittcd by the detection arrangement. This

expression is invariantly defined, and hence the following analysis can equally well be

performed in the laboratory or the center of riass coordinate system; however, nost pre-

sent experiments of the typo under consider2tion correspond to the laboratory syste.n

which will be employed here. For the various experiments this reduces to

2
2 d 3  1 ,O 2 (Ia and Ib) (2 13,)

• d p3 d 1:1 2 (Ic) (2.13b)

PI E3 P3t3 0

f4. + 2 ) d 1 M 12 (Ia and IIb) (2.13)

m2 (Ej + m2 )

PE4 d p4  d 4 IMo 2  • (2.13d)

The inelastic scattering contribution to the observed cross section taces the for •

1,] 4~p (pk + p 2 - p3. - p 4- k)(.)

R

Consider Experiment I. Since the intogrand is an invariant, the integration over k and

p4 may be carried out in any reference frame. For each fixed value of p , it is conve-
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nient to use that frrxne in which the photon energy i isotropic; it is specified by

S + p 2  0 With the aid of the L' -function, the intcoml.l : ay be reduced to

d 3 , ro• -#3 k d1L- .. )
R U

1 3

where G and Z4 are defined in (2.11). The ren-..iniiig facto" in the integrand is to be

evaluated at the appropriate values specified by the S-function; dL indicates an inte-

gration over angles in the special fri:.ie.

For EDperinents Ia and Ib. we have

2

... d., 1) ta d

P3 d 3 d 3

doC1 2

-T 3
L2 1

While for Experiment Ic, ve find

d 3 2 pn ddP3. P~ 3  3~ sin' 31 d

3

3 p~d3  143  d

Note that the kinen,.atical factors are respectively the sane as inl (2.13a) and (2.13b);

a similar result is true for ! xporiment HI. Since the incident flu:: factors are the sane

for elastic and inelastic scat tering,,, the fractional corrections from inelastic scatte-
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ring take the fern

J1 h d 110

(Ia, Ic, Ila or lIc) (2.14)

where i = 1 or 2.

In summary, the calculation is to be ca.ried out in the following rn anor : for eoch

fixed value of i, the integration over photon angles is to be carried out in the

special Lorentz franc in which the photon energy is isotroic. The result is then to

be integrated with respect to in order to obtain the desired radiative correction.

(b) Details of the Convection Contributions

It is convenient to rearrange (2.3) into the sun of direct toems for each of

the particles and an interference cont.ibution :

B = B(1) + B(2) + B(12) (2.15)

where B(1) is the i = 1, j = 3 contribution, B(2) is the i 2, j 4 contribution,

and all other tesm are combined into the singlo expression

Z Z A .(2p,-k) (2p-j (2p,) 1
k-X2L2 K, +2k p3  k 2+2k~p2  k -2k.rB([2) -- - 4 - kp 2

If the two particles are identical, B is syriuetric under the interchange of the two

initial or the two final momenta, but the separate torns in the decoposition do not

have this property.
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Now (2.4) uust be generalized for the case whore recoil is inportant. To riako the

external radiative correction ajproxi:iation, we neglect all k-dCpendcnco in the into-

grands of (2.14) except that appearing in the convection factors. It should be rcnarrked

that this approxi..ation involvus neglecting k not only in the Dirac operator, but also

in the final state Dirac s2inors which arc held fixed at their elastic scatterinig

values. In place of (2.4), we then have for the real photon contribution to the obser-

vable cross section

2 B t 0 (2.17a'

where

2¢kB' d S (2.17b)

We shall alwars use the index i for the detected particle and j for the undotected one,

Thus, we sit i = 3, j = 4 for Exerinut I and the reverso is true for *121 ri.uent Ii.

S' is defined by.:

s, = ,'(1) + s!(2) + s1(12) (2.18'

where
22S'(1) = 1 P3I ( P(2,P3',

2i P k.p3
= 4 :2 \ ' -V .p" _ (2.1 Sb)

C4Z2 P2 I-L. P4 ,

S1(2) =-(2.18c)

s,(12) _ _ P 2 k3 _ - (2.18d)
2 -
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The difference between B and B' is that in the expression for B all the momenta pI

are approximated by their elastic scattering values p in Bt the p are functions

of 6 pi through the conservation laws.

In order to make use of the infrared cancellation which has already been

included in (2.5), we rewrite B' in the form

IV

B' = B + B (2.19a)

where

2 k cd _g5 (2.19b)
-i J

2 B dH{ k 2 S [23 (2.19c)

0

Again, i refers to the detected particle in either experiment. In the last of these

equations it is safe to set the photon mass equal to zero because S' - S vanishes

for 0. In order to agree with the definition of B given in (2.4), it is necessary

for the photon energy J to be defined differently when it is associated with S. It is

given simply by ,/m the square brackets in (2.19c) are to emphasize that k is to

be calculated differently in the two terms. If the experi.ertal situation is quch that

the undetected particle is non-relativistic in the special Lorentz frame for all k

(i.e., if m j > F), B may be neglected and the convection contribution reduces to

S2 2 m n- 2+ a 2

B+ReB = jI n(. - + -Jn~? -~ 22n

1 12 2 -n( -ij - .n + /(2E 1 /m2 )m2E, F3 m2 E1 E-2a

21 2

(Ia and Ic) (2.20a)
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2 2 
2  2

BzRz 2  2' 2_a1_+__f_22

R B 2-' l  1"nt'-' I + - 7 Ln -_ + e.nF - -n.+
2--1 a, mi 2<1 2-1

Z1 Z2 - T nn n( 2 ) Qn- +/,(2E1/m2) (2E3/m2)7
2 ~m2 F,1 13aI

(Ia and lIc) (2.20b)

where the following notation has been introduced:

a* = P1"P3 E" ET 3  (1 - cos a 3)

m2 (E4 -m 2)

a2 = = 2 4

a. a + (a., m4,]
ml.a. - n ' _ m ) "

2a, 2
n 1 for a., m4 (2.21)

m

2 (a 1-i2 2. 2 - for a, m2

2 +2

(a m~ 2 2~(~rn]-

2 a
n-1

2

/.( )= n2 i 0(-))
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The approximate form taken for pj is actually valid only for a4 >> m2. In the non-

relativistic region, p. tends to zero;, however, the error made in using the approxima-

tion for all a's is only of order unity. The function eS is not similarly treated since

it multiplies a logarithm of ('s. In evaluating (2.5) and (2.6), we have used the fact

that the energies E are the energies of the particles as seen in the rest frame of the

recoiling particle when the scattering is elastic. Thus, for Experiment I :E = p, .P4/m2

while for Experiment II : E p .P3/Mi.

When the energy of the recoil particle can be relativistic in the special

Lorentz frame, 8 B can make an important contribution. The details of this calculation

are relegated to the Appendix. However, some of the general features will be discussed

here briefly. We recall that each value of the magnitude of k corresponds to a definite

choice for the special Lorentz frame. We see from (2.17) and (2.18), that the angular

integration in the special Lorentz frame involves terms of the form

jdfl ~* PaP (2.22)
k.p! k.p k.p k  /

It is necessary to state carefully what this expression means because two different

Lorentz frames are involved. The angular integration in the second term is carried out

in the rest frame of the unobserved recoil particle when the scattering is elastic; the

factors of k of course cancel out for this term. The angular integration in the first

term is carried out in the special Lorentz frame; for uniformity of notation, we have

set p, = pl and p2 = P2" If neither . nor k corresponds to the unobserved particle,

pI and I are both independent of the direction of k and the integral may easily

evaluated; the result is

2-

where 2px( k) = (I + x)p + (I - x)pk, with a similar definition for p"'. If I and k

are any combination of 1 and 2, px equals p' and this integral is identically zero;
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the same is true for k = 1. Under the assumption that the monentua resolution is

good (tp 3 /p 3 << I or A p4/p4 << 1), it can be shown that the remaining terms of this

form (S., k J) are also unimportant; the details are in the Appendix.

In case k or I corresponds to the unobserved particle, the corresponding

momentum will depend upon the angular variables in the integration. For example, in

Experiment I, we have

k . p4

and

* --p p.(p4 + P3) - p!. k

p4 " P, - k.p, (2.24)

In evaluating the integrals, we are interested only in keeping coetributions which can

be large under foreseeable ex-perimental conditions, If terns of non-logarithmic order

are neglected, the calculation is relatively easy; the details are given in the Appen-

dix and the results are contained in the folloi.rinZg formula

Z , 2'i
B= n -'n(1 + 2 ) (2.25)

2 (m
i

The energy spectrum may now be obtained from (2.20) and (2.25) by differentiation

da c4 60 + 2 2 n I ) -
2 2 2 + 2 2 n (1+ 4 -4Z 1Z 2 T n

dp3  ;. 3  2

(,i~xp.) (2.26c)

de, ot (i 2 ~ 2 Fr1 21' ]-
dp 4 4 X 2 (2 1 11M 1 2 L
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In the terms arising from Vg , the denominators should, be AP p111 +(m 2/2 ?**)] rather
2than A p. However, these terms are important only if i >7 mj, and in that case the

given approxiation is valid.

(c) SfnS-Conv-tion Contributions

The convection contributions discussed in the previous subsection are inde-

pendent of the spin of the charged particles. If the particles have spin, additional

terms, such as (2.1b), will appear in the factors for emission and absorption of pho-

tons. These terms depend on the details of the current distribution at somewhat smeller

distances than the convection terms. This is evidenced by the extra powers of k they

contain, which tend to emphasize the hi.rder photon contributions. Howver, as will be

seen, the interference betw;Teen the spin and convection terms has a pan't which is lar._ge

(i.e. logarithmnic in a large unorgy ratio) and is independent of the specific details

of the scattering interaction. In contrast to the infrared part of the convection termr

which is characterized by an integral of the form f dk/k, the spin.-convection contri-

bution is characterized by f dk/H, with an upper cut-off of order E for virtual ho-

tons and A E for real ones. Thus the approxi;ation of neglecting k inside the residual

factor in the matrix element is not likely to be as good in the latter case. However,

there seems to be no indication that the correction to this approximation contains

logarithms of large energy ratios; this of course does not prevent it from having a

large numerical value.

In view of these remarks, the significanco of the spin-convection contribu-

tions is somewhat uncertain in the general scattering situation. However, they may then

give us some information about the order of magnitude of the errors in the straight

convection approximation. In any case, there are numerous important applications where

the basic scattering is given quite well by the Born approxiomation; the approximation

required can then be studied in detail and they are generally found to be quite ade-

quate. The following analysis will be for Dirac particles only, with no anomalous

moment included. The contributions of the anomalous moiaent of the proton in electron-

proton scattering will be discussed explicitly in Section III.
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Consider the virtual photons first. If the incident particle has spin one-

half, it contributes the following spin-convection term

iZ Id 4 k ( '(p3-k,Pl-k)I 33 +[ 1, el(P 3-k,pl-k)} u(Pl) (2.27)

(k2 -21cp 3 (k
2 -2kop 1 )

where r is the -matrix operator appearing in the basic scattering matrix element.

In order not to make use of the detailed propertics of r" , we wish to arrange the cal.-

culation in such a way that -matrices need not be shifted through it. In fact, if we

restrict o .4r attenti.o; to logarithmic terms, we will find that it is possible to elimi-

nate the extra -matrices and thus express 6 M(1) in terms of H . If the k-dependeno,

of r is neglected, the integration with respoect to k is easily carried out and it lendx

to the result

M(1) = 0 dx) r 1 '1 '+ r u(Pl

16 )f j-1p i!+PrX.

with 2px = (1+x)pI + (1..x)P o Now if trms of order m are neglected (ultimately in

the cross section they would be of order m1, ii), the commutators can be roplaced by the

invariant scalar product 2p, "P2  and we find :

SM(1) = e',iC(1)M0  * (2.28a)

with

2 d 2 2p, "3

Zl dx =Zi- zn 2 . (2.28b)

-)1 ° 1 -X 2 m1
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By the same arguments (we see in the Appendix that the neglect of terms

proportional to m2 gives no appreciable error), we find for the interference of spin

and convection currents of the target particle

C(2) 2 a2 Qn 2 +2 a M24 (2.29a)
2([a2 -m2 m2

which reduces to

C(2) 2 when p2 .p 4 J m2  (2.29b)
2 ,r m 2

The latter approximation will be used for all values of p2.P4 although it yields a

small (order unity) error for small p2 .p 4.

For the cross terms between particle 1 and particle 2, we have to distinguish

the contribution from the interference of the spin current of particle 1 with the con-

vection current of particle 2 called C(12) with the corresponding contribution C(21).

The result, whose derivation is presented in the Appendix, is

ZZ Z2 P' ZIZ2

C(12) = C(21) = 1 n P2P3 n . (2.30)
21t Pl"P2 21T

Thus the contribution from the spin of particle 1 to radiative corrections

is given by :

2, [" c(i) + C(12)1

and similarly the contribution from the spin of particle 2 is

2 c(2) + 0(21)1
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At first sight, the real photon spin-convection terms involve integrals of

order o0 f dk/E and they should accordingly be of relative order c A E/E. However,

if the undetected particle is extremely relativistic in the laboratory, a photon emit-

ted parallel to it can carry off considerable energy and a much larger contribution

might be obtained. When this situation occurs, it is no longer profitable to attempt

a general analysis since other features, such as variation of the traces through the

dependence of the final momentum on k, will be of comparable importance. Accordingly,

we do not include these terms among what we choose to define as the external radiative

corrections. These contributions will be discussed in greater detail in the following

Section.

III. REFINMIENTS AND LIMITATIONS

The preceding Section contains most of what can be said in a general way

about the radiative corrections without a detailed consideration of the basic process.

Before turning to some of the refinements which are possible for specific processes,

let us review qualitatively the origin of the logarithmic terms. The doubly logarithmic

terms are associated principally with the infrared divergent integrals; roughly spea-

king, one logarithm comes from the strongly peaked angular integration and the other
9from the dk/k integration . In the case of the virtual photons, the upper limit of the

dk/k integration is effectively determined by the external momenta. In making the ex-

ternal radiative correction approximation, the dependence of the basic factor on k was

neglected. If this variation with k is in fact not too violent, the doubly logarithmic
10terms should be well estimated . The effect of the variation of the basic factor on

k may perhaps be estimated by expanding it in a power series in k. The linear term in

k would no longer contain an infrared divergence, but it could yield a single logarith

from the angular integration. This procedure will be used in one of the estimates that

follows.

In the non-infrared parts of the external radiative corrections (occurring

in both the convection and spin-convection contributions), some single-logarithmic

terms are associated with the strongly peaked angular integrations tines a non-loga-

rithmic dk/E integral. Others are residues of the spurious ultraviolet divergence,

which is logarithmic. Clearly, if there is any important variation of the basic factor
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these terms have not been reliably estimated. In that situation there is no justifica-

tion in retaining them if the corrections mentioned in the preceding paragraph are

ignored. In the most general situation, we therefore regard only the dominant doubly

logarithmic terms as having been reliably estimated.

Fortunately, in most of the contemporary or possible experiments in which

radiative corrections are likely to be an important consideration, a more detailed

study is possible. Some of these refinements on the general discussion will now be

presented.

a) The effect of the k-dependence of the basic process.

Suppose the basic scattering is due to the exchange of a single photon. Consider two

photons exchange; in obtaining the convection contribution for the soft photon, we

have made the following approximation relative to the hard photon

1 )21 2~
(q-k)2  2

The correction to this approximation corresponds to inserting an extra factor(2k.q/q2)

into the definition of B(2), Eq.(2.16). The resulting correction is easily found to be-

3ZIZ

B(12) = Nn (3.2)
2 1-

which is important enough to be included in our final formulae.

Suppose the basic interaction is more complicated, but still may be oxpresse-

by a function G(q2). Then ( 3.2) must be multiplied by a factor

- q 2 Gi(q 2)iG(q 2 ) ,

where the prime denotes differentiation with respect to the argument. If the scattering
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is due to electromagnetic interaction, but involves finite structure, G(q2) takes the

form P(q2)/q 2 where P is the form factor, and the correction factor which should mul-

tiply (4.2) becomes :

I - q2 F,(q 2)/F(q2) . (3.3)

The second term, which might become more important than the first in some circumo.

stances, has been omitted from the tabulated formulae presented in the following

Section.

The preceding argument is valid only when the basic factor does not vao

ry much within the range of values of k which are important in the integral. Some

examples where this variation must be considered more completely will now be quoted

The first of these is electron-electron scattering at small center-of-mass angles.

Then q2 is small and the magnitude of (2k.q/q2) might become large. To see how impor-

tant these effects might be, we may compare the contributions obtained by the present
2

methods with the exact two-photon exchange contributions . The surprising result is

that our methods yield quito cccu,,,t =srers for this oxample. Lnother example is

Compton scattering near 1800 in the center-of-mass. The dominant diagram is the one

in which the incoming electron euits the final photon before absorbing the initial

one. The intermediate electron propagator then yields the small denoniinator 2P3.P2.8
In this case if we compare our result with the exact one , we find a difference

(exact minus approximate) in B of :

/B c_=' + n2 Pi~p 4 (34

41l PiOP3

An exact calculation of B for large energy loss has not yet been done, so we cannot

determine the corresponding error AB in the calculation of real photon emission. To

the extent that AB and 6B are associated with infrared photons, they may tend to

cancel like the doubly-logarithmic terms which depend on the type of infrared cut-off.

The term (3.3 ) is not included in the tabulated result of Section IV; the results for

Compton scattering are clearly less reliable than those for the other processes tabu-

lated.
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We conjecture that the difference between electron-electron scattering

and Compton scattering arises as follows. The effective range of integration over k

which yields the major contribution is determined by the external charged lines. For

small q in electron-electron scattering, the range is proportional to q. Thus as q

decreases, k.q/q 2 does not increase in importance. On the other hand, for Compton

scattering, the important range of k is probably determined from (P2- P4 ) 2 # which is

large relative to 2P 2 .P 3 in the situation under consideration. Important corrections

result.

b) The effect of the anomalous magnetic moment of the proton.

In electron-proton scattering, suppose that the extra soft photon exchanged between

the two particles interacts with the anomalous moment of the proton rather than with

its convection or spin current. Corresponding to the fact that the photon is assumed

to be soft, we consider the terms with the least number of powers of k in the numera-

tor and we neglect the dependence of the basic interaction on k. It is then easy to

give an argument why these contributions vanish to logarithmic order. For example,

suppose the photons are exchanged between the incident particles; we then have to

study the structure

d4kV [' Ii d~k

(12 +m2) 4 2~~H?7~ p) k u(p2)
.1 m) (k2 - 2k.P2)(k 2 + 2k.Pl) k (2

But the result of the k integration can only replace the g in the commutator by 12

it is then trivial to see that the remaining Dirac operators acting on the proton

spinor give zero.

The point of this demonstration is that no logarithms arise from the in-

teraction of soft photons with the proton's anomalous moment. However, if we take

into account the variation of the basic interaction with k, or the contributions from

electron spin interacting with the proton moment, a non-vanishing contribution could

occur. These contributions come mainly from the region of very largo k and they are

not easily included within the framework of our present discussion.
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c) Small virtual electron four-momentum.

A situation in which the integration over virtual photon momentum might have a large

contribution owing to several denominators becoming small simultaneously occurs as

follows. The virtual photon emitted by the incoming electron takes nearly all the

energy and momentum of the electron. It then scatters from the proton as a nearly

real photon and is re-absorbed by the electron. We night view this qualitatively as

a Compton scattering of the Lorentz contracted proper field of the electron. Letting

p be the momentum of the virtual electron, we consider the contribution arising from

the region of small p

d d I + ml) ((_m
2(P3)  d P 2 2 .T, 2 Lu(Pl)(p -2p.p 3+mI) p -ml

As in the case of the spin-convection and infrared terms, a logarithmic factor arises

from the angular integration. More important, the factor i is replaced (in form) by

i + j3 ; we then find :

( ,, p1 . + p3,\ c 9 x log.

When this is combined with the factor associated with the scattering of the photon

by the proton, which we denote simply by Fo\ (p1,p3 ,p2 ,p4 )(p is here neglected),

the result is zero by gauge invariance :

P P ~ Fjt . 0

Thus no large contribution arises from the situation in which the virtual electron

is "soft".

In this subsection and the preceding one, the two-photon exchango terms

have been studied from the point of view of radiative 
corrections. Other studies

11
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have placed the emphasis on the off-the-mass-shell Compton scattering by a physical

nucleon. While a critical study has not been made of the extent to which the two

mthods overise and the extent to which they are supplementary, it seems significant

that they agree that the specific two-photon terms are unimportant at energies below

I BoV. Our analysis shows that, as a consequence of gauge invariance, an unusually

large nucleon Compton scattering neeed not result in a large two-photon contribution.

There is not theoretical indication that those terms will become important at higher

energies, but neither is there proof that they do not. The situation is also subject

to experimental study by comparison of electron-proton and positron-proton scattering,

the difference in cross sections being due to the interference between the one- and

two-photon terms. Present experiments 12 give no indication of a significant two-

photon term at incident energies of 200 and 300 MoV. Two photon contributions could

also introduce terms in the cross section which would make it impossible to fit the

experimental data with the Rosenbluth formula 13 There is no experimental evidence
14

for such a "breakdown" of the Rosenbluth formula

d) Radiative corrections to olectromagnetic scattering of spin zero

varticles.

Radiative corrections to scattering of spin zero particles have already been partially

included in the so-called convection contributions. However, in case the basic inter-

action is electromagnetic, there are certain additional refinements which we would

like to describe briefly. These refinements are actually of no practical importance,

because in actual physical situations the basic interaction is non-electromagnetic.

The first of those refinements is that two photon lines may terminate at

the same vertex because of the A2  +  term in the Lagrangian. Thus it is possible

for a virtual photon to have one and terminate on the external boson line and the

other terminate at the same vertex as the exchanged photon. It is not difficult to

show that this gives purely a contribution to the "spurious charge renormalization",

and is hence not of interest. The second refinement come about because the photon

emission operator depends on the momentum of the charged particle. Thus, in the radi-

ative correction in which the boson omits a virtual photon, exchanges a photon, and

then re-abosrbs the virtual photon, the emission operator for the exchanged photon
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has the factor (p, + p3 - 2k), in place of the factor (p1 + p3), in the basic

matrix element. Using standard methods, the -2k, results in a contribution to be

added to B

-2 n 2P, * P3
2

e) Other refinements involvina virtual photons.

Some other refinements are relegated to the Appendix; these are necessary for the

justification of some of the approximations which have been used, but they are not

in themselves of any great intrinsic interest. They will be described very briefly

here. One of these is electron spin-proton convection contribution arising from an

additional exchanged photon. In Section IIb, this term was treated by neglecting po-

wers of the proton mass in the numerator in comparison with its energy. On its face

value this is not a good approximation unless the electron energy is very -Iuch greater than

the proton mass; nevertheless, the error is shown to be unimportant,

f) Refinements in the calculation of the real photon contribution.

In some situations, the kinematics porit the unobserved photon to have an energy

comparable to that of the unobserved particle. For example, if the proton is detected
in high-energy electron-proton scattering, an unobserved photon omitted parallel to

the electron can carry most of the unobserved energy. The approximation of

neglecting powers of k in the numerator is then no longer valid, and the calculation
must be reconsidered carefully. In addition to the explicit k-dependence of the into-
grand, there is an implicit one duo to the dependence of the final electron projec-

tion operator on k :

2m I ( " X + 64 + ml)/21

In the calculation of Soction IIb, this projection operator was approximated by

+ m)/2m.
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A direct calculation of the additional contribution arising from k-depen-

dence would be possible, but somewhat lengthy. Fortunately, as we are interested only

in the logarithmic terms, it is possible to give a rather detailed discussion without

explicit evaluation of the traces. As usual, the logarithmic terms turn out to be a

simple multiple of the original traces. For definiteness, the discussion will be

given for Experiment II. Recall that the product of the traces can be reduced ultima-

tely to a polynomial of invariant products of the momenta pl, P2 2 P3 P4' p4 P

pi and k. Because of the conservation equations (2.8), there arc various relations

between the invariant products. Clearly, since 8 P4 is small, it can be neglected

everywhere in the trace. Also, p may be eliminated by

= P3 -k+ P4

P3 - k

The product of tracos then depends on invariant products of p1. P2? p3, P4 and k.

Its value for k = 0 is just the trace occurring in elastic scattering. Wo have then

to consider integrals in the special frame with polynomials in k.P2 in the numerator.

The detailed considerations are given in Appendix D ; and the results, which are

simple, are the following. If the integrand has the form :

m2 /(k.p) 2  or 1/(k.p)(k.pk) .,k 3,

extra powers of k in the numerator may be neglected. In integrals containing a factor

(1/k.pi), the other k's in numerator and denominator may be replaced according to the

substitution

k (1/2)p3

For example

k.pj_ P3 "hA Jk 3
k.pI kek k.pi
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and

k. V k.pk P .(1/2) 3 P3"Pk km 3

k.pj k.pm k.pi p3 "p

If there are higher than two powers of k in the numerator, an additional numerical

factor is required. However, in all these cases, it will turn out that cancellations

will give a result which is identically zero.

Because of these simple results for the integrals, we can neglect all

terms in the trace which do not involve photon-emission from external line 3; wherever

possible, factors of mi are neglected. Let us consider first the interference terms;

the pertinent factor in the traces is

(2p"1 k "'".. (J3 2pi - 2 3 )/2 k.p ...

3 2 k.p~l3 P 3 +

The first term is the one already included in B'. With the substitution k-+ 1/2 P3
2 2

and the approximation p3 = ml I ' 0, the second and third

terms cancel. Thus the interference terms may be ignored; this applies also to inter-

ference terms in which the other factor corresponds to emission from an internal line.

Finally, the term involving emission only from line 3 involves

(2p+ X 'Q (2p+ft j) (t m 2 - 1

2 k.pj 3 2 k.p (k'P )2 2 k.p 35

The first term is already incorporated in B'. The second term is proportional to the

original trace and yields the radiative correction

hz 2  2 r

where i refers to the observed and j to the unobserved particle.
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IV. SU12RY OF RFaSULTS FOR VARIOUS 112ERIDENTS.

The aim of this section is to assemble the various contributions derived

in Sections II and III into convenient formulae for various possible experiments.

Since terms of order unity have laready been neglected in approximating the various

integrals, we omit terms from the general formula which will be small in any fore-

seeable practical energy range. An exception to this remark is that we keep certain

terms of order one when they are associated with the electron vortex function or

vacuum polarization. There is no particular justification for this, except that the

numbers are simple and well-known. It would be feasible to calculate these terms of

order unity for pure olectrodynaic processes - in fact, they are partly contained in

some earlier exact calculations T but present experimental accuracies for this type

of experiment do not seem to warrant the effort at the present time. To got an esti-

mate of the error involved in neglecting these contributions of order unity, we note

that they are to be multiplied by (c/rI') to yield a relative correction to the cross

section. An educated guess is that errors as large as 1% are likely, but errors lar-

ger than 2% are not likely. Although some new notation is introduced here, most of

the quantities are defined in Sections (Ia) and (IIb). Particularly to be noted are

(2.9), (2.10) and (2.21).

a) Electron scattering from a Proton with the Electron Detected.

To conform with the notation of Tsai, we set mi = m, m2 = k, ZI = 1, Z2 = -Z, where

Z is 1 for the electron-proton scattering and -1 for positron-proton scattering; AE 3

is the energy resolution of the electron detector as discussed in Section (Ila).

According to (2.10) and (3.2), the fractional correction is then given by

2 2o( Ro +B)

-4 P[Cn 2 I"P32 I] £nr /?.('\\ 2
-  + - n 2PI"P3-4 n

"m 26 m 2j

~ E [m2 I(4.1)

+ ,j n in )[' - - , (2E,//11) + ((23/1,)

4E43

Z E tn n P., E +' 2 n N Jr --91 N4L: F 4 2
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It has not boon necessary to include B B in this expression since it is negligible

for all feasible energies. By differentiation, we find for the sooctrum of scattered

electrons

dc CO 2Z21 2 F 4  '4(p4
d 2 n - + 4Z P n + 2Z1 (4.2)

Table I contains two numerical examples of the a-iplication of ( 4.1 ); they are the

same examples given by Tsai, whose results are labeled S *. We may note the following

differences between the present calculation and Tsai's

i) The terms retained by Tsai are cxpressed in terms of Spence functions; in effect,

our calculation is arranged so that all Sponce functions arc of order unity and

they are neglected.

ii)In the Z and Z2 contributions we retain spin-convection and non-infrared convec-

tion terms which Tsai neglects; these terms have a single powor of a logarithm of

energy ratios, but they are not numerically very importeat in the cases considered,

The difference between those two approximations is not unreasonably largo; and as

far as accuracy is concerned, there is no great basis for preferring one over the

other.

b) Electron Scattering from a nroton with proton detected.

The principal difference between this and the preceding oxam.ple is that 6 B is quite

important, corresponding to the fact that a photon can carry off a largo amount of

energy if it is emitted parallel to the final electron, even if the energy loss of

the proton is relatively small. Another complication of lesser imfortanco is that

it is necessary to treat the electron trace in its entirety, including spin contri-

butions, as discussed in Section IIIf. The fractional correction is

.ee/.o
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2EPn *I -1]Pn A+ LZ ~. 2p, p3  28 _1 .3n 2A I ~AL+

m 2 n m 

+ 5[ n PI ) 2  A4j - (2E 1 /M) + / (2 3/1-1)( (4.3)

z j N4  E 4+p4 ' ~ (l )2 A2]1 2 2N
T- 7 2 111J

where A L(EI + M)/E 4 ] (Lp 4/p 4 ) The energy distribution of the recoil pro-
tons is :

d = 0n2 C1" -P3 1  nA + 4Z n +
d P4  p 4 M 4

(4.4)

+ 2[ LE4~ E+ 4  -i

p4  -) ,4

It should be noted that the "radiative tail" is considerably smaller in proportion

to the cross section than for the case where the electron is detected; it also decrea-

ses somewhat more rapidly with increasing energy loss. Table I contains numerical

examples for the same experimental parameters worked out previously for the electron

detection experiment. It should be noted that ( 4.3 ) disagrees with the result obtai-

ned by Krass 4 . The disagreement can be traced to an error in the hard photon calcula-

tion in Ref. 4. In particular, the equation giving k.p 3 after(3.18)of Ref.4. should be

replaced by

kp e(p p3)(k.p ,

15With this change, his result can be reconcilied with ours
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c) Electron-electron scattering.

Now, there is no physical distinction between Experiments I end II; the radiative correc-

tions may be calculated in either way and both methods give the same results. Adhering

to the restrictions imposed earlier, we assume that both final electrons are extremey

relativistic in the final state (laboratory system) when the scattering is elastic.

A slight complication is introduced because exchange gives rise to to terms in the

scattering amplitude. In the doubly logarithmic corrections, both terms are corrected

by the same factor. However, for the singly logarith.2ic corrections, these factors

are different and the scattering amplitude is not altered by a cormon factor. This

difficulty may be overcome by the following observation. U7hen the two teras are com-

parable, the factors are the same. *hen they are not comparable, we may simply use

the factor associated with the biggest term, with negligible error. To see this, con-

sider vacuum polarization which modifies the photon propagator occuring in elastic

scattering

by the factor

( + -" -n 2P1 "P'
3,1 m

Here p' refers to either P3 or P4, and a linear combination of both photon propagatorc

occurs in the elastic scattering matrix element, corresponding; to the direct and ex-

change contributions. If p1.p3 and p1.p4 are comparable (i.e., the soime within a

factor of 3 or 4), we can use either as the arguiment of thej logarithm with an error

of order unity. If they differ by a large factor, the photon propagators will also

differ by a large factor; and the term with the smallest value of p1 .p' dominates.

Accordingly, we can take as our rule that the minimum value of pl "p' be used as the

argument of the logarithm; this is simply mE , where E is the smaller of r, and E
m ~m4

A similar argument may be used with respect to the two-photon-terms. Recall that the

single logarithmic contributions arising from convection and spin-convection were

fortuitously cancelled by the contribution of Section IIIa. As a consequence, only
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the single logarithmic terms from the vertex parts survive. These may also be expres-

sed in terms of E The fractional radiative correction is then
m

f n mE 1  E3 E4  - E 4n

(4.5)

n 2E 3 n ( E, r)L
m 4 f

,fhere r depends on the type of experiment and the resolution

r= Lpi/pi for type (a) experiment (4.6a)

Pi sin 6.

m

Q 2 (I - ) i for type (o) experiment (4.6b)
EI  sine.

It is also a simple matter to revise ( 4.5 ) for a clashing beam oxpcriment

(p1 + p2 = O) where only one of the particles is detected tith energy resolution.

Simply replace Es by the invariant p. .P2/m ; r is then given by ( 4.6a ) with

the understanding that A P. and pi are center-of-mass quantities. As usual, the

energy distribution may be obtained by differentiation : it will not be reproduced

here. Equation ( 4.5 ) differs from the result of Tsai 3 . His calculation uses appro-

ximations adequate for the experimental conditions he envisaged, but the present

results are valid for more general conditions.



40.

d) Electron-positron scattering.

The results are contained in a single formula

0 13 -2E1E 4  2 n 2 +
)n El r34 .  

+

+ 2E4 - (E-1
I  r) (4.7)

3 m 4 m

where r is given by ( 4.6 ). The result may also be used in the center-of-mass

frame using the rules given in the preceding subsection.

e) Compton scattering with photon detected.

In this case, particle (i) has mass and charge zero; as in electron-electron scatte-

ring, S B is quite important.

The result is :

ok r [ n 2m - n r - 1 n2 F'1 r ) +

(4.8)
+ "n 2E 4 3 En--- r)
2 - m 4 s

From the discussion given in IIIa, this formula is not expected to be very reliable

for backward scattering in the center-of-mass system, corresponding here to El>> E 3
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f) Compton scattering with electron detected.

There is now a slight complication in that the undetected particle has zero mass;

the separation of B' into B and , I is therefore apparently meaningless. However,

we may use our previous result by taking the limit of the expressions for B and SB

as m1 -4 0. Only B contributes, and the correction is

"4 24 2 '1 n r + - (4.9)

The validity of the limiting procedure (mI  o 0) has been confirmed by a direct cal-

culation in which mI1 is taken to be zero and B' is evaluated directly. As in the pre-

ceding example, this equation is not expected to be reliable for El > E .

V. DISCUSSION

Two basically different approximations have been made in obtaining the

results of the preceding section. The first of these, which wras discussed with the

aid of numerous examples in Section III, is the neglect of all terms which are not

obviously large because of the confluence of several small denoi.inators. The terms

retained can be studied without reference to the details of the basic interactions.

We have termed them external radiative corrections. The interhal radiative correc-

tions, whose complete evaluation would be many more times difficult, have in most

cases been estimated to be of lesser importance. A general estimate of the error made

in neglecting the internal radiative corrections cannot be made. In the case of

Compton scattering with nearly complete interchange of momentum between the electron

and the photon, the corrections appear to be large. On the other hand in those cases

where the basic interaction is due to the exchange of a photon between charged par-

ticles, there is no reason to suppose that these corrections are important relative

to the second type of approximation, which is the neglect of terms of order unity

(times a/ ) in the external radiative corrections. This second approximation is
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expected to introduce an error of order 1% and probably not more than 2% in the

calculated cross section.

There is one other important question to be discussed : namely, to what

extent can the higher order corrections be estimated by assuming that the factor

(1 + 6 ) is actually the beginning of the series expansion of es , where es

provides a good estimate of the corrections to all orders. It is known that the in-

frared part of the radiative correctiQnk should be exponentiated in this manner 16.

The doubly logarithmic terms in the virtual photon contribution B clearly are relatr'

to the infrared divergence since they depend on the type of cutoff ( ? or k. )
min

used in the calculation. With very good resolution ( r sufficiently small), the

real photon contribution B' (5:B) is purely infrared, and so its doubly logarithmic

contribution may also be exponentiated. With poorer energy recolution, 6 B becomes

important and terms involving the square of the logarithm of the energy resolution

arise. Althaugh these terms are not of the typical infrared form, their main contri-

bution does arise from the smaller values of the energy loss (see 2.26). We therefore

make the following conjecture. If 6' is the doubly logarithmic part of , the

expression

e (i+ -6)

yields a better estimate of the radiative corrections than does the original estimate

I+6 ).
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AP-MIX

A. Kinematical Details.

As discussed in Section II, it is convenient to carry out the final state

integration over the phase space of the final unobserved photon and particle by first

integrating over angles in a special Lorentz frame in which the total momentum of the

unobserved constituents is zero. There is a different Lorentz frame for each value of

the four-momentum loss of the observed particle. This section of the Appendix will be

concerned primarily with the details of how various kinematical quantities, as seen in

the special frame, depend on the momentum loss of the observed particle. Unfortunately,

the analysis is complicated and uninteresting, but it is straightforward and it seems

unavoidable if all the terms of logarithnic order are to be properly identified.

The special Lorentz frame is defined by the relation

p' + k = 0 . (A-i)

In this equation, and in the remainder of the Appendix, we shall always let the sub-

script j refer to the final unobserved particle and i to the observed particle. The

energies of the unobserved constituents in the special frame are :

= i/C and El = (m + Li)/C (A-2)

with

C = (Pi + 2) i

5'i ~= (P1 *+p2) " P
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when it is necessary to distinguish, we use C = CI or C2 in Experiment I or Experiment

II respectively. The energy E' of any other particle as seen in this special frame

can then be determined from

C El = (k + p).p' = (pj + . (A-3)

The resulting values of E
1  for the two experiments are the following

m2E3 + SE - m2 -8 E3 M 2P3 + 6
Experiment I : 2 3 (A-4a)

m2'4 +2 m.' E3 (A-4b)
2C

m21 (A-4c)

Experiment II E' m2 (E4 -m2 )+ 2 - m2 E4  m2('4-m2 ) + 2 (A-5a)

C2  C2

2E3 2 4 (A-Sb)

E m2E (A-5c)

02

Obviously, in these expressions E1 is zero for Experiments Ic and IIc. In order to

make suitable approximations in evaluating the final integral over the momentum loss,

it is necessary to Iow whether these various energies are relativistic or non-relati-
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vistic. The situation is complicated by the fact that as Pi varies, some of the ener-

gies may vary between relativistic and non-relativistic values. This variation is to

be studied under the general experimental restrictions we have iaposed, namely, that

the energy of the incident and scattered particle be extremely relativistic as seen in

the laboratory, that q2 i. m2 , and that the resolution of the detected particle be

reasonably good (say 1Ep1 / I iI < .05). Also, we assurie m, < m2  and if

mi = m2 that both final particles are extremely relativistic in the laboratory system.
As 6 p1 tends towards zero, the various El approach liits E which are simply the

energies of the elastically scattered particles in the Lorentz frame in which the un-

observed particle is at rest. For the two experiments these are

I. E= 3, =E, E2 = E 4

II. E1 = m2(E4-m2)/ml, E2 = m2 E-3 /m, E4  m2 E1/m .

Now we can discuss the situation in the two experiments. In "]-pe:cient I it is easy to
see that El and E' are always much greater than mi . It is also easy to see that if

1 3
E2 is large compared to m2 (i.e., E 4  m2 ), 21 will be large compared to m2 for all

p3. The only case that might cause trouble then is that E might be comparable to

m2 for small 6 P3 , but might become relativistic for larger S p3
o rrom (A-4b), this

could happen only for Experiment Ia when 6 E3 > E4, which implies E3  E4, and

hence E/E 3 '- 1. Now the condition that E4 be a non-relativistic energy is simply

thatq2j / m2 be much less than one. But since ) q 21 m2 , this may happen only

if m2 > ml. Thus we need simultaneously

2 q2 2
mI /,< Iq /,<m 2  an "3p3 2

In the most "favorable" case of electron-proton scattering, one could reach these con-

ditions by the following experimental parameters : E1  = 50 BeV, 4 3= 0,5 x 10-3

radians, and 6 p3 = 5 BeY, It seems unlikely that precision work will be carried
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out in this region in the near future; even if it was, it would not be justified to

investigate this point in further detail in view of other more serious approximations

that have been made in the calculations. Thus, for Experiment I, we conclude that the

E always have the same character (relativistic or non-relativistic) as the corres-

ponding E

In Experiment II, Ej and E' are always extremely relativistic; E2 is also
1 4 2

extremely relativistic, but under certain conditions, El may become non-relativistic.

For electron-electron scattering these conditions cannot be attained because of the

restrictions that both final particles be extremely relativistic. For electron-proton

scattering they can be attained for Experiment IIa when E,> m2  and E4 is small. We

shall not present a detailed analysis here, but in the calculations special attention

will be paid to those integrals which depend on E' in Experiment II.

Finally, we present a simple approximation which is useful in evaluating

certain integrals which will occur in the next section. Angular integrations often

result in expressions of the form

p E -p

It is easy to show that this function can be bounded from above and below in the

following manner :

2 -n 2E 4 n (E+p \ 2 + m n E (A.6)
m p -p m

If E m, we can approximate the function by the lower bound; the upper bound is

numerically a better approximation than the lower bound (error is less than 5% for all

E), but it leads to slightly more complicated integrals. These bounds will be particu-

larly helpful in the case of E* . In Experiment II since it will enable us to determinc

the consequences of its variation from relativistic values to non-relativistic ones.
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B. Cal culation of D.

We have to evaluate the integrals of the form given in (2.22)

=k d.Q k.. .kp .P (B-1)
k. 'k. 'kkpPk S

The angular integration in the first term is carried out in the Lorentz frame defined

by (A-i); that of the second term is defined by p. = 0. Ie have given arguments in

Section II that all terms with l and k combinations of 1 and 2: and the term with

I = k = 1 are identically zero. Now we shall show that the terms with - = i and

k = 1 or 2 are also unimportant as a consequence of the restriction Apil<< I Pi I •

The integral (2.34) yields a logarithm only if p "Pi Z m m1  ; in that case, it

is approximately

PJ' Pi = 4PiJkA (- 4p P i ) Pi Pj" Pi

The resulting contribution to 8 B is always of order (et p/p I).

We must therefore consider only two cases for (B-i)

1. The case k = j, -Q j.

Using (2.35), we find for the integrand

.k

Eh - h Cosy d cos E

which yields

E' 2+ii E-L
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2. The casek= = jk

The integrand is

2 12 2m. k m.

- ~.CosE)'

which y.elds

2
I.. = 4," m - 1 - i (

L 2 +2 m. + 2

The results may now be combined and the final integrals evaluated for the two experi-

ments.

Experiment I.

It is convenient to split 6 B into three parts acsociated with the decompo--

sition of S'. For Experiment I, S B(I) vanishes and we need consider only 6 i(12) are..

6 B(2). The arguments of Appendix A showed that E; and arc always relativistic,

so it is permissible to approximate the functions of (B-2) by the lower bound of (A-6),

It follows that s

Z 1Z 2  d.
B (12) = I

z 1z2 1Q

I- 1+ (B-4)

21f 2
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There are no experimental conditions for which this term is likely to be important.

The expression for c' B(2) redunos to

2  C, A 2(2) 2 1< -6i 2  I 2D2"1 i 112 2-, 2 l.p )

If we use the simple lower bound approximation from (A-6), the result is

2 (' LE3  ?B(2) = Z2 K Qn2  + 1 + 2 1 + (B--5)

The additional contribution that would be obtained by using the upper bound of (A-6)

rather than the lower bound can, after considerable labor, be reduced to

8< 2  m2  / 1 ']2  + 4 A E 3

(B-6).

We want to show that this can safely be neglected. Note first that it can be comparable
to (B-5) only if E4 is comparable to m2, The logarithms can then have a large argument

only if '
4 E,> P3> m2. As discussed in Appendix A, thare are no practical expe-

rimental situations where these and the other restrictions are likely to be met, The

approximation (B-5) is therefore adequate. In practice, only the first term of (B--5)

is likely to be important.

&_eiment II.

This time S1(2) vanishes. The results for 6 B(1) and §E(12), using the
lower bound approximation of (A-6) are

.e/.e
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Z2

i 2  2 2  fEl LP4

6-B(12) Z 2 n 2 (1 + 6E4 (B-.8)

The contribution resulting from the differjnce between the upper and lower bounds of

(A-6) is of order (m2/E3) compared with (B-8), and is hence completely negligible. As

in Experiment I, only the first term of (B-7) is importmat in practice; the unimportant

terms are dropped in the result quoted in Section IIb.

C. Spin-Convection T4u involving ay Ieai'Particle.

The purpose of this Appendix is to derive some of the results of Section IIc.

In effect, it is an exercise in the manipulation of relatively complicated expressions

to reduce them to a simple form by neglecting terms of order Luity. Consider first the

contribution arising from the convection current of particle 2 and the spin current of

particle 1. Following the procedure used in deriving C(I), the result may be written

C(12) Z j (I+x) dx P p 2 + P3_ (C-I)
p2( 12 p2(3,2)

where

p2(12) =2 (1+x)2 m2 + (-x) 2 m2 - 2p1 .P2 (l-x2)

p (32) =1 (,+x)2 m2 + (,_x)2 m2 + 2p eP2 (1_x2) •

It is understood that (C-I) is a principal value integral, since the imaginary part

will not contribute to the cross section to order ol . The general restrictions assumed
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on the parameter are

P1"P2, P3°P2  : mlm2 I

however, it is possible that m2 eP pIP 2, P3"2"

Neglecting terms of order unity, we find

z z2  1 ~ m 2  2pIOP 2C(12) = 2 n PP2 + 2 mn 22
2 ( P"P m2e + 2p 2 m2

32m2n 2P 14P2 +

2 2 -2
m 2 2 3. P2

2 - -2 (C-2a)

The approximation is justified as follows :it is clear that the second and third terms

of(C-2a) are important only when the arguments of the logarithms are saall; the third2
term is of order one when 2P3 .P2  = m2  in spite of the small denominator. The scatte-

ring kinematics yield:

2p3 .p2  2E 2E1/m2

2 m2 1 + (. 1 / 2 )(1-cosO)

2P1 "p m2

1 + (2p 1 .p(2)



52.

2

Thus if 2 p "p2  in2 , the second terms of (C-2a) is small and the third of order unity.

If 2p,.p 4 m2, the second and third terms tend to cancel; and, in fact, C(12) itself1P2 <" ' 21

is small.

In calculating the contributions involving the spin of particle 1, the

approximation

il u (pi) = L u (pi)

0

was used repeatedly. In fact, detailed examination of the trace shows those terms are

actually of relative order (m2/E2). In evaluating the contributions from the spin of

particle 2, more care is needed since these terms may not be negligible if m2 is large.

The contribttion from the convection current of particle 1 and the spin current of par-

ticle 2 yields a contribtuion C(21) which is identical to C(12)(to order unity) plus a

residue :

-mZ 1Z2  / f r+ 3 3 r+r
- -, j- (I--) dx p2 (3,2) + 3 ,

mn 2 3P2  -n 2
m 21 22 2 "2f-+ -. ,3 + [ 3 ['+1 riZl

2-i*( 1  m - 2 T3 .p M2 + 2Pl p2

2(2/ 2p 1 P2if m2 <(2p,.p 2, 2p3'P2  these terms are of relative order (m2!2P 1 .P2 ) Qn 2

and hencv negligible. If m 2  2p.p 2 , 2P3.p2 ' their relative order is

E1/m2 or 3/:m2, which is again negligible. In the intermediate region, they are of

order unity.

The contribution involving the spin and convection current of particle 2

may be evaluated in a similar manner. Again the terms involving a factor m2 are of order

unity or less and the surviving contribution is given by (2.29).
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D. Formulae for calculatinr the effect of trace variation.

In this Appendix the formulae needed in the analysis of Section IIIf will be

derived. The integrals required in the evaluation of B' take the form

r i  2

6k.p k.p

The modification of these integrals produced by factors of form k.pc in the numerator is

to be determined for various choices of a and b. It may be helpful to preface the follo-

wing analysis with a brief outline of the arguments which will be used to determine which

terms are significant. The main point is to observe the ' 2 dependence resulting after2
the angular integration. If m2 c-n be neglected without causing a divergence for small

2' and if there are powers of J in tha numerator, the final integral will be some
positive power of r 2" Such terms will be of relative order (1 LP41 /E)n n > 1,

and hence negligible. We therefore retain only the terms with the sallest degree in 62

(as m1 2 60). How this is used may be illustrated by the following oample

P .b = a Eb - paPb

pa. (p3 + Sp4) pb.(p 3 +6 P4 )
m2 + 2'2

Case I : a = b = 3
"2 2 -2 2 2

k m 1  k m mJ H 2 4 if 2 4f2
(k.p9 2 m 2

4- - 41 2

m1 + 2"(2
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Here the first term yields a contribution to B and the second to 8 B. Suppose there is

an extra factor k.pc in the numerator. If c = 3, this factor will yield an extra fac-

tor 2 after the angulr.r integration, and it may therefore be neglected. Suppose c 3

then

k.pc' = kE - PC cos

k E
C

c 3

62 Pc(P3 P P4)

2m+ 2 2

where a term drops out in the angular integration. The final integration yields a result

of order unity. Thus, an extra rower of k. 'p gives a result which may be ignored. The

same is true of higher powers as well, so in this caso the trace variation my be neglc-

ted.

Case 2 : a = b / 3

If the extra factor is k.!. = or k.Pa the resulting contribution is

clearly negligible. If it is k.p (c $ 3. b) we write

k.pc = kE - kc.P
CC

k.pE.. p2 .)/E 2
c - . cYlP'. a - (....a a.

E P (P3+ 6 P4)2 -k p - k.p

aPa'(P3+ P4)

The second term in the second line was transformed by the argument given in the intro-

ductory paragraph and the third drops out upon angular integration. The final contribu-

tion is negligible.
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Case 3. a 3, b 3, a b

It is necessary to consider only the special cases c = 3, a,or b, since all

other cases may be reduced to these by momentum conservation. If c = 3, the extra factor

of b'2 yields an unimportant contribution. If c = a, the angular integral yields

kPa"Pb 22
41 -- n -

Eb

But ( Eb) /pb(P+ P4), and the resulting contribution may be nejlected.

Case 4. a = 3, b 3, one factor k.pc in numerator.

This is now the only case which can yield on important contribution, A facto-

k.p' in the numerator may be neglected. Thus consider
3

k' k.pc P' pb
k.pj 

k.Pb

as in Case 2

~ T k PbP

k.p c  = -b--- j.2

E'b b

Eb
4 k.pb
E b

This is just what is obtained by the substitution

k.p c P3'Pc
k. Pb P 3"Pb
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Case 5. a = 3, b 3, factor k.Pc k.p d in numerator.

If c or d = 3, the result is immediately negligible. For c, d 3, the

factors k.pc and k.pd are rewritten as in Case 4. This time the last term involving

( ×x )(c x pb) / b in k.p and a similar term in k.pd cannot be eliminated by

angular symmetry since there are two such factors in the numerator. However, they may

be eliminated by another argument :

-b) (cb) ; x

Ebb

k 1p p -

1' k [~c.Pb

Because of the factor k,,, 2/2, this term uay be neglected.

EC
k'p = k.Pb

0b

and Jnk df) j2 ' k.pc k.pd
k.pj k.pb

kP 3 'Pb ___Ed

= 4f

= 2 Pi*pb pc*p3 pd'p34 m2 + 2 2)2 pbp
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The resulting term logarithmuic in r2 is precisely what would be obtained by the sub-

stitution

p It.~ p d_ P3'c P36pd

in the original expression.
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Caption for Table I.

The table contains thu frctional radiative co-rcetions for olect:on-zrotcn

(e- - p) and positron-proton (e - p) scatturing. A and B aro ;pjrimunts in which the

electron (or positron) is dutuctd and A' and B are expuriments in iwhich the proton

is detected. The rusults of this paper are givun by 6 , and those of Ref. 3 by *

The experimental conditions for the various experiments are

A(A'): E = 900, E3  = 327, E4  = 1511, AE 3  = 13.1 (&p4 = 10)

B(B'): E1  =500, E3 = 50O, E4  =5638,/ 3  = 10 (p = 10)

where the energies and momenta are in MoV.


